If cancer were easy, every cell would do it

Killer T cells surround a cancer cell.
A new Scientific Reports paper puts an evolutionary twist on a classic question. Instead of asking why we get cancer, Leonardo Oña of Osnabrück University and Michael Lachmann of the Santa Fe Institute use signaling theory to explore how our bodies have evolved to keep us from getting more cancer.
It isn’t obvious why, when any cancer arises, it doesn’t very quickly learn to take advantage of the body’s own signaling mechanisms for quick growth. After all, unlike an infection, cancers can easily use the body’s own chemical language. “Any signal that the body uses, an infection has to evolve to make,” says Lachmann. “If a thief wants to unlock your house, they have to figure out how to pick the lock on the door. But cancer cells have the keys to your house. How do you protect against that? How do you protect against an intruder who knows everything you know, and has all the tools and keys you have?” Their answer: You make the keys very costly to use.
Oña and Lachmann’s evolutionary model reveals two factors in our cellular architecture that thwart cancer: the expense of manufacturing growth factors (“keys”) and the range of benefits delivered to cells nearby. Individual cancer cells are kept in check when there’s a high energetic cost for creating growth factors that signal cell growth. To understand the evolutionary dynamics in the model, the authors emphasize the importance of thinking about the competition between a mutant cancerous cell and surrounding cells. When a mutant cell arises and puts out a signal for growth, that signal also provides resources to adjacent, non-mutated cells. Thus, when the benefits are distributed to a radius around the signaling cell, the mutant cells have a hard time out-competing their neighbors …
Read further at Nexus Newsfeed


Leave a Reply

Your email address will not be published. Required fields are marked *